(3x^3-4x^2+7x)+(4x^3+9x^2-12x)=

Simple and best practice solution for (3x^3-4x^2+7x)+(4x^3+9x^2-12x)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^3-4x^2+7x)+(4x^3+9x^2-12x)= equation:


Simplifying
(3x3 + -4x2 + 7x) + (4x3 + 9x2 + -12x) = 0

Reorder the terms:
(7x + -4x2 + 3x3) + (4x3 + 9x2 + -12x) = 0

Remove parenthesis around (7x + -4x2 + 3x3)
7x + -4x2 + 3x3 + (4x3 + 9x2 + -12x) = 0

Reorder the terms:
7x + -4x2 + 3x3 + (-12x + 9x2 + 4x3) = 0

Remove parenthesis around (-12x + 9x2 + 4x3)
7x + -4x2 + 3x3 + -12x + 9x2 + 4x3 = 0

Reorder the terms:
7x + -12x + -4x2 + 9x2 + 3x3 + 4x3 = 0

Combine like terms: 7x + -12x = -5x
-5x + -4x2 + 9x2 + 3x3 + 4x3 = 0

Combine like terms: -4x2 + 9x2 = 5x2
-5x + 5x2 + 3x3 + 4x3 = 0

Combine like terms: 3x3 + 4x3 = 7x3
-5x + 5x2 + 7x3 = 0

Solving
-5x + 5x2 + 7x3 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), 'x'.
x(-5 + 5x + 7x2) = 0

Subproblem 1

Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0

Subproblem 2

Set the factor '(-5 + 5x + 7x2)' equal to zero and attempt to solve: Simplifying -5 + 5x + 7x2 = 0 Solving -5 + 5x + 7x2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.7142857143 + 0.7142857143x + x2 = 0 Move the constant term to the right: Add '0.7142857143' to each side of the equation. -0.7142857143 + 0.7142857143x + 0.7142857143 + x2 = 0 + 0.7142857143 Reorder the terms: -0.7142857143 + 0.7142857143 + 0.7142857143x + x2 = 0 + 0.7142857143 Combine like terms: -0.7142857143 + 0.7142857143 = 0.0000000000 0.0000000000 + 0.7142857143x + x2 = 0 + 0.7142857143 0.7142857143x + x2 = 0 + 0.7142857143 Combine like terms: 0 + 0.7142857143 = 0.7142857143 0.7142857143x + x2 = 0.7142857143 The x term is 0.7142857143x. Take half its coefficient (0.3571428572). Square it (0.1275510204) and add it to both sides. Add '0.1275510204' to each side of the equation. 0.7142857143x + 0.1275510204 + x2 = 0.7142857143 + 0.1275510204 Reorder the terms: 0.1275510204 + 0.7142857143x + x2 = 0.7142857143 + 0.1275510204 Combine like terms: 0.7142857143 + 0.1275510204 = 0.8418367347 0.1275510204 + 0.7142857143x + x2 = 0.8418367347 Factor a perfect square on the left side: (x + 0.3571428572)(x + 0.3571428572) = 0.8418367347 Calculate the square root of the right side: 0.917516613 Break this problem into two subproblems by setting (x + 0.3571428572) equal to 0.917516613 and -0.917516613.

Subproblem 1

x + 0.3571428572 = 0.917516613 Simplifying x + 0.3571428572 = 0.917516613 Reorder the terms: 0.3571428572 + x = 0.917516613 Solving 0.3571428572 + x = 0.917516613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3571428572' to each side of the equation. 0.3571428572 + -0.3571428572 + x = 0.917516613 + -0.3571428572 Combine like terms: 0.3571428572 + -0.3571428572 = 0.0000000000 0.0000000000 + x = 0.917516613 + -0.3571428572 x = 0.917516613 + -0.3571428572 Combine like terms: 0.917516613 + -0.3571428572 = 0.5603737558 x = 0.5603737558 Simplifying x = 0.5603737558

Subproblem 2

x + 0.3571428572 = -0.917516613 Simplifying x + 0.3571428572 = -0.917516613 Reorder the terms: 0.3571428572 + x = -0.917516613 Solving 0.3571428572 + x = -0.917516613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3571428572' to each side of the equation. 0.3571428572 + -0.3571428572 + x = -0.917516613 + -0.3571428572 Combine like terms: 0.3571428572 + -0.3571428572 = 0.0000000000 0.0000000000 + x = -0.917516613 + -0.3571428572 x = -0.917516613 + -0.3571428572 Combine like terms: -0.917516613 + -0.3571428572 = -1.2746594702 x = -1.2746594702 Simplifying x = -1.2746594702

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.5603737558, -1.2746594702}

Solution

x = {0, 0.5603737558, -1.2746594702}

See similar equations:

| 3+x/20=4 | | (4t+16)+(5t-21)= | | 8x^2-21x+13=0 | | 8+22=-5(7x-6) | | a=1/2*8*25*17 | | 0.6(3x+6)=1.6-(x+2) | | 3x+7=-8(.75-x) | | 0.03/1.23 | | 750.00+50.00x=-185.00+35.00x | | a=1/2*7*18*24 | | 8+5=315 | | 3x-(x+5)=7x+5+1 | | .02(x+4)+1.2(x-3)= | | 24x-13-15x=3(3x-5)+2 | | 5(4X+6)=-22+32 | | 27x^2+64y^3=0 | | X+25=50 | | a=1/2*4*12 | | a=1/2*18*7 | | 750.00-50.00=185.00+35.00x | | 1/4Y-6=-5 | | a=xin^2 | | B/4-4=-5 | | 7Z-12-3Z+4=0 | | -6+2b=8 | | (1/4)(7x+5)=6 | | x/31=-49+29 | | 20+2(10)/5+12(1/4) | | n*n-3n+2=0 | | ((x-8)/(x+5))=((x-1)/(2x+10)) | | v^2+v-156= | | -2x-2(-4x+18)=-102 |

Equations solver categories